
MODULAR SUPERCOMPUTING: a system-wide 
orchestration of heterogeneous resources
ADAC, 24.01.2022 I  Estela Suarez (JSC)



OUTLINE
• System architecture

- From dual architecture to the
Modular Supercomputing Architecture (MSA)

- Hardware implementations of MSA
• Software

- Software stack
- ParaStation Modulo
- Scheduler

• Application experience
• Conclusions and next steps



Suarez – 2022 3

JSC DUAL APPROACH
3

Can one combine the best of these 
two worlds into a single system?
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THE DEEP PROJECTS

2011-2021: The DEEP projects
• DEEP (2011 – 2015)

- Introduced Cluster-Booster architecture

• DEEP-ER (2013 – 2017)
- Added I/O and resiliency functionalities 

• DEEP-EST (2017 – 2021) 
- Modular Supercomputer Architecture

2021-2024 The SEA projects
• DEEP-SEA, IO-SEA, RED-SEA
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HETEROGENOUS MONOLITHIC
Every node contains accelerators (e.g. GPUs)
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• Every node contains CPU(s) and some accelerator
• All nodes are equal  “monolithic”
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HETEROGENOUS MODULAR
Different nodes are grouped in “modules”

Network

• All nodes within one module are equal
• Different modules have different configurations  “modular”
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+: Energy efficient
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+: High flexibility
+: Dynamic resource 
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MODULAR SUPERCOMPUTING 
ARCHITECTURE
Composability of heterogeneous 
resources
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• E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing 
Architecture: from idea to production", Chapter 9 in Contemporary 
High Performance Computing: from Petascale toward Exascale, 
Volume 3, p 223-251, CRC Press. (2019)

• E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at 
JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12, 
(2018)

• Cost-effective scaling
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MODULAR SUPERCOMPUTING 
ARCHITECTURE

• Cost-effective scaling
• Effective resource-sharing
• Match application diversity

- Large-scale, complex workflows
- Data analytics
- Machine- and Deep Learning
- Artificial Intelligence

Composability of heterogeneous 
resources

• E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing 
Architecture: from idea to production", Chapter 9 in Contemporary 
High Performance Computing: from Petascale toward Exascale, 
Volume 3, p 223-251, CRC Press. (2019)

• E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at 
JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12, 
(2018)

High-scale 
Simulation
workflow

Data 
Analytics
workflow

Deep 
Learning
workflow
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THE HARDWARE PROTOTYPES
CDF – 18.06.2019

DEEP-ER Prototype
16 Xeon + 8 KNL nodes
100Gbit Extoll
40 TFlop/s

DEEP Prototype
128 Xeon + 284 KNC nodes
InfiniBand + 1.5Gbit Extoll
550 TFlop/s

DEEP-EST Prototype
55 Cluster + 75 Booster + 16 Data Analytics 
100 Gbit Extoll + InfiniBand + Eth
800 TFlop/s

2015 2016 2020 © FZJ
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MODULAR SUPERCOMPUTER JUWELS
JUWELS Cluster

Intel Xeon (Skylake) processor
InfiniBand EDR network 
2,500 compute nodes

10 PFLOP/s peak (CPU-based)

JUWELS Booster
AMD EPYC Rome 7402 processor

3,700 NVIDIA A100 GPUs
InfiniBand HDR DragonFly+

70 PFLOP/s peak (GPU-based)

#7#44
Entry in Nov’20

TOP500: Rank 7 World
Rank 1 Europe

Green500: Rank 1 in TOP250

TOP5 AI: Rank 4 (3 in 2021)

JUWELS is designed for simulation and 
large-scale machine learning 

Funded through SiVeGCS (BMBF, MWK-NRW)

Entry in Nov’20
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JSC MSA DEPLOYMENTS

DEEP-EST Review at Month 36, Virtual, 01.10.2020

JUQUEEN

JUROPA

JURECA

Architecture innovation 
started in DEEP

Booster

Cluster

JURECA

JUWELS

JUNIQ
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MELUXINA
Cluster: 570  CPU nodes 
• AMD EPYC 7H12, 2× 64C @2.6GHz, 512 GB (~ 4 GB / core)

Booster: 200  GPU nodes 
• AMD EPYC 7452, 2× 32C @ 2.35GHz, 512 GB (~ 8 GB / core)
• 4× NVIDIA A100 Ampere, 40GB HBM2

Smaller partitions
20  Large Memory nodes: CPU node with 4096 GB, 1.92 TB SSD
20  FPGA nodes: CPU node with, 2× Stratix FGPA10MX (16GB HBM)
20  Cloud nodes: CPU node with 4096 GB, 1.92 TB SSD

System-wide
• NVIDIA/Mellanox InfiniBand HDR 200 Gb/s
• Atos BullSequana XH2000
• ParTec ParaStation Modulo Software
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MATCHING APPLICATIONS AND HARDWARE

HW

Appls.SW
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SOFTWARE ENVIRONMENT
• Low-level SW: Inter-network bridging
• Scheduler: Slurm, psslurm (ParaStation Modulo)
• Filesystem: BeeGFS, GPFS
• Compilers: Intel, GCC, NVIDIA HPC SDK
• Debuggers: Intel Inspector, TotalView
• Programming: ParaStation MPI, OpenMP, OmpSs, CUDA
• Performance analysis tools: Scalasca, Score-P 

Extrae/Paraver, Vampir, Intel Advisor, VTune…
• Benchmarking tools: JUBE
• I/O Libraries: SIONlib, SCR, HDF5,…

• Eicker et al., Bridging the DEEP Gap - Implementation of an Efficient Forwarding Protocol,  Intel European Exascale Labs - Report 2013 34-41
• Clauss et al., Dynamic Process Management with Allocation-internal  Co-Scheduling towards Interactive Supercomputing, COSH@HiPEAC,(2016)
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ParaStation Modulo
• ParaStation ClusterTools

- Tools for system provisioning and system management

• ParaStation HealthChecker & TicketSuite
- Automated error detection & error handling
- Ensuring integrity of the computing environment
- Keeping track of issues
- Powerful analysis tools

• ParaStation Process Management & ParaStation MPI 
- Runtime environment tuned for the largest distributed memory supercomputers
- Optimally support the Modular Supercomputing Architecture

Source: Thomas Moschny
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ParaStation Process Manager
• Scalable network of 

process management daemons
- Process startup and control, I/O forwarding, …
- Precise resource monitoring
- Proper cleanup after jobs
- Daemons run on the compute nodes

• psslurm: full integration with Slurm
- Plugin to ParaStation Management
- Reduce number of daemons on compute nodes
o Replace node-local Slurm daemon

- Integration with ParaStation HealthChecker
- Possible to fix problems and add unique features

HEAD NODE

Slurm
Server 

slurmctld

Job 
List

LOGIN NODE

sbatch / salloc
srun

Job 
script

COMPUTE NODE

psid / psslurm

PAM

SSH Daemon

COMPUTE NODE

ParaStation psid
psacc

pspmi(x)

core / 
frame-
work

psslurm

Source: Thomas Moschny
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ParaStation MPI Library
• Based on MPICH 3.4.2 (MPI-3.1 compliant)

- Supports MPICH tools (tracing, debugging, …)
- MPICH layers beneath ADI3 replaced 

by ParaStation PSP Device
- Powered by pscom low-level communication library
- Maintains MPICH ABI compatibility

• Support for various transports and protocols via pscom plugins
- Support for InfiniBand, Omni-Path, Extoll, (soon BXI)
- Multiple transports / plugins can be used concurrently
- Gateway capability via PSGW plugin
- CUDA awareness via GPUDirect

• Proven scaling up to ~3,500 nodes and ~140,000 procs. / job

MPI Application
MPI Interface

MPIR 
(HW-independent)
ADI3 Interface

MPID 
(HW-dependent)

HW Interfaces

Hardware

M
PI

C
H 

ar
ch

ite
ct

ur
e

PSP Device

pscom Interface

pscom

pscom Plugin Interface

SHM UCX PSGW…

Source: Thomas Moschny
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ParaStation Global MPI for MSA

• Clauss et al., Dynamic Process Management with Allocation-internal Co-Scheduling 
towards Interactive Supercomputing, COSH@HiPEAC, (2016)

• ParaStation Global MPI 
– Uses MPI_Comm_spawn()

 Collective spawn groups of processes 
from Cluster to Booster (or vice-versa)

– Inter-communicator 
 Connects the 2 MPI_COMM_WORLD
 Contains all parents on one side and all children on the other
 Returned by MPI_Comm_spawn for the parents
 Returned by MPI_Get_parent by the children

• An MPI application can run:
– Using only Cluster nodes
– Using only Booster nodes
– Distributed over Cluster and Booster

 In this case two executables are created
 Collective offload process
 Transparent data exchange via MPI

- One can also start two parts of a code and connect 
them via MPI_Connect()
- Or have one single common MPI_COMM_WORLD and 
split it into subcommunicators via MPI_Comm_Split()
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COMPILE AND RUN
• Compilation

- Creates two executables (if different CPU architecture)
o One for CLUSTER code
o One for BOOSTER code

• Batch system
- Reserves required resources

• Execution
- Script starts Booster code
- This code calls MPI_Comm_spawn() with Cluster executable
- Optional: xenv to load suitable environment modules

• Runtime + Scheduler + FS
- Detect ParaStation MPI calls
- Distribute child binaries

salloc --partition=cluster -N 4 
: --partition=booster -N 12 

srun --het-group=1 -N 4 -n 8 
./app_booster



Suarez – 2022 23

Heterogeneity from user’s PoV

• Slurm supports the ability to submit heterogeneous jobs (since v 17.11)
- form job pack (het-job) allocation using colon notation for salloc, sbatch, srun
- even allowing different executables

• Full support for job packs in ParaStation psslurm, with unique features for modular jobs:
- Support for heterogeneous jobs with common MPI_COMM_WORLD
- For each job in the job pack, resources can be specified individually
- Support global resources (e.g. gateways): psgw plugin to psmgmt + spank plugin

o Compensates for Slurm’s inability to handle global resources
o Extends salloc, srun and sbatch

• Modular here means: Jobs across heterogeneous hardware
- Either with a common MPI_COMM_WORLD, or with separated / interconnected MPI_COMM_WORLDS

$ srun –N 1 –p part1 ./first \
: -N 2 –p part 2 ./second

Source: Thomas Moschny
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Explicit MSA-extensions to ParaStation MPI
• API additions to retrieve topology information

- Querying the module ID:

- Splitting communicators according to the topology:

MPI_Info_get (MPI_INFO_ENV , "msa_module_id", …, value, …);

MPI_Comm_split_type (oldcomm, MPIX_COMM_TYPE_MODULE, …, &newcomm);

• Modularity-aware MPI collectives
- Optimized patterns for collectives that take 

topologyof the MSA system into account
- Assumption: Inter-module communication is 

the bottleneck
- Dynamic updates of the communication 

patterns supported, e.g. for malleable jobs 
(experimental)

Module 1
C C
C C

Module 2
B B
B B

Module 3
D D

Bad (binary tree)

MPI_Bcast()

Module 1
C C
C C

Module 2
B B
B B

Module 3
D D

Good (hierarchical)

Source: Thomas Moschny
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IMB MPI Benchmarks
Allreduce with 8 (CN) + 8 (DAM) nodes,
8 processes per node, and 1 Gateway node

Hiearchical collectives (MSA awareness)

• General rules to optimize collectives execute these steps in order:
- 1) Do all module-internal gathering and/or reduction operations (if required)
- 2) Conduct the inter-module operation with a single process per module
- 3) Perform a strict module-local data distribution

• Multi-level hierarchy awareness
- Apply this set of rules recursively, 

i.e., node level, module level, system level

• Performance heavily depends on concrete settings, i.e.:
- Number of processes / gateway nodes
- Distribution of the ranks in the communicator
- Message sizes (and hence the collective communication pattern)

Size [Byte]

Source: Thomas Moschny
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RESOURCE MANAGEMENT
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Improved Workflow Support (experimental)

• New parameter --delay introduced in sbatch
command for job packs
- Amount of time, the next job should wait after start of the 

first job in a job pack

• Goal: Overlapping job execution
- Currently not supported by Slurm
o Whole job pack either accepted or rejected
o All jobs allocated and run in parallel
o All jobs wait for allocation if any of the jobs can not be 

allocated at the moment

Time

Job 1

Job 2

Job 3

Typical Workflow  supported
by Slurm

Time

Job 1

Job 2

Job 3

Workflow we are trying to
achieve
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EXTENDING THE SOFTWARE STACK

• Support for 
accelerators & 
memory

• Malleability

• Interoperability

• Composability

• Performance 
portability

• Resiliency

Application / Workflow

Programming Model

Component-specific 
node-level support

Component-specific 
node-level support

Component-specific 
node-level support

Operating System

System Architecture
CPU 

+DDR 
+NVM

GPU 
+HBM

Accel. 2 
+ mem

Accel. N
+ mem

…

Runtime

GPIOpenMP OmpSs MPI

DaCeDSL NabLab
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Quantum integration in MSA

• New usage models
- Tightly coupled simulations: benefit from efficient data exchange
- Hybrid quantum-HPC simulations: combining quantum and classical algorithms
- Workflows comprising stages on the QPU, with pre- and post-processing 

on HPC modules

• Integrate QPU and its front-end into the managements stack
- Low-latency connection to other modules via federated, high-speed network
- Unified environment: Integrated in the user-, SW-, schedule- and resource- mgmt.
o Provide “direct” access of the QPU via a web-based portal
o Redirect portal requests through the global scheduler/resource manager
o Pseudo-shared usage model as prerequisite

• Exact requirements depend on the use case and are subject to research

Source: Thomas Moschny
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Architecture Use-Modes

Cluster-Booster 
use mode

Code partition
Workflow
I/O forward

• Kreuzer, et al., Application Performance on a Cluster-Booster System. IPDPSW – HCW (2018) [10.1109/IPDPSW.2018.00019]
• Kreuzer et al. The DEEP-ER project: I/O and resiliency extensions for the Cluster-Booster architecture. HPCC’18 proceedings (2018) 
[10.1109/HPCC/SmartCity/DSS.2018.00046]

• Wolf et al., PIC algorithms on DEEP: The iPiC3D case study. PARS-Mitteilungen 32, 38-48 (2015)
• Christou et al., EMAC on DEEP, Geoscientific model devel.(2016) [10.5194/gmd-9-3483-2016]
• Kumbhar et al., Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations, Lecture Notes in Computer Science 9697 (2016) 
[10.1007/978-3-319-41321-1_19]

• Leger et al., Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform.  ParCo 2015, Advances in Parallel 
Computing, 27 (2016) [10.3233/978-1-61499-621-7-349]
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Application use case: xPic
• Space Weather simulation

- Simulates plasma produced in solar eruptions and its 
interaction with the Earth magnetosphere

- Particle-in-Cell (PIC) code
- Authors: KU Leuven

• Two solvers:
- Field solver: Computes electromagnetic (EM) field 

evolution
o Limited code scalability
o Frequent, global communication

- Particle solver: Calculates motion of charged particles 
in EM-fields

o Highly parallel
o Billions of particles
o Long-range communication

A. Kreuzer, J. Amaya, N. Eicker, E. Suarez, "Application performance on a Cluster-Booster system", 2018 IEEE 
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), HCW (20th International 
Heterogeneity in Computing Workshop), Vancouver (2018), p: 69 - 78. [doi: 10.1109/IPDPSW.2018.00019]
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xPic – ORIGINAL CONFIGURATION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

for (auto i=beg+1; i<=end; i++){ 
fld.solver->calculateE(); 
fld.cpyToArr_F(); 

pcl.cpyFromArr_F(); 
for (auto is=0; is<nspec; is++) { 
pcl.species[is].ParticlesMove();
pcl.species[is].ParticleMoments(); 

} 
pcl.cpyToArr_M(); 

fld.solver->calculateB(); 
fld.cpyFromArr_M(); 

} 

fld: Field Solver

plc: Particle Solver

Copy information 
between solvers
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xPic – CODE PARTITION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#ifdef __CLUSTER__
for (auto i=beg+1; i<=end; i++){

fld.solver->calculateE(); 
fld.cpyToArr_F();
ClusterToBooster();
// Auxiliary computations
ClusterWait();

BoosterToCluster();

BoosterWait();
fld.solver->calculateB(); 
fld.cpyFromArr_M();

}
#endif

#ifdef __BOOSTER__
for (auto i=beg+1; i<=end; i++){

ClusterToBooster();

ClusterWait();
pcl.cpyFromArr_F();
for (auto is=0; is<nspec; is++) {
pcl.species[is].ParticlesMove();
pcl.species[is].ParticleMoments();

}
pcl.cpyToArr_M();
BoosterToCluster();
// I/O and auxiliary computations
BoosterWait();

}
#endif
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xPic – (1-NODE) PERFORMANCE RESULTS

• Field solver: 6× faster on Cluster
• Particle solver: 1.35 × faster on Booster
• Overall performance gain:

– 3%-4% overhead per solver for C+B 
communication (point to point)

A. Kreuzeret al. "Application Performance on a Cluster-Booster System“, 2018 IEEE IPDPS Workshops 
(IPDPSW), Vancouver, Canada, p 69 - 78 (2018) [10.1109/IPDPSW.2018.00019]

#cells per node 4096

#particles per cell 2048

Compilation flags -openmp, -mavx (Cluster)
-xMIC-AVX512 (Booster)

28% × gain compared to Cluster  alone
21% × gain compared to Booster alone

1×
node

38% × gain compared to Cluster  only
34% × gain compared to Booster only

8×
nodes
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xPic – STRONG SCALING on JURECA 

• Code portions can be scaled-up 
independently
- Particles scale almost linearly on Booster
- Fields kept constant on the Cluster (4CNs)

• A configuration is reached where same 
time is spent on Cluster and Booster
- Additional 2× time-saving is enabled via 

overlapping

#cells per node 36864

#particles per cell 1024

#blocks per MPI process 12, 32 or 64

Compilation flags -mavx (Cluster)
-openmp, xMIC-AVX512 (Booster)

(4 Cluster nodes)
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GROMACS: multi-module usage in MD simulations
• Best mapping on MSA depends on the problem size and aims at optimizing the computational load

- <104 particles: only on Cluster (CPU)
- ~ 105 particles: Booster or DAM (Data Analytics Module)
- >106 particles (large macromolecules): pair interactions on GPU, run PME on CPUs
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GROMACS: multi-module usage in MD simulations
• Best mapping on MSA depends on the problem size and aims at optimizing the computational load

- <104 particles: only on Cluster (CPU)
- ~ 105 particles: Booster or DAM (Data Analytics Module)
- >106 particles (large macromolecules): pair interactions on GPU, run PME on CPUs
- Very large volume (>106 nm3): Replace PME with FMM (Fast Multipole Method) running on ESB
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GROMACS: multi-module usage in MD simulations
• Best mapping on MSA depends on the problem size and aims at optimizing the computational load

- <104 particles: only on Cluster (CPU)
- ~ 105 particles: Booster or DAM (Data Analytics Module)
- >106 particles (large macromolecules): pair interactions on GPU, run PME on CPUs
- Very large volume (>106 nm3): Replace PME with FMM running on ESB
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NextDBSCAN: multi-module usage in ML

• Parallel algorithm for density-based clustering of arbitrary data sets
- Performance and flexibility gain by running on multiple modules

See presentation in 
ADAC applications group:

DBSCAN Clustering and Modular 
Supercomputing: Lessons Learned

Ernir Erlingsson (University of Iceland)
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CONCLUSIONS
• The Modular Supercomputing Architecture (MSA)

- Orchestrates heterogeneity at system level
- Allows scaling hardware in economical way (Booster  Exascale)
- Serves very diverse application profiles 
o Maximum flexibility for users, without taking anything away (still can use individual modules)

• Distribute applications on the MSA give each code-part a suitable hardware
- Straight-forward implementation for workflows
- Partition at MPI-level interesting for multi-physics / multi-scale codes
- Monolithic codes do not need to be divided

• Current / Upcoming implementations of MSA
- DEEP system, JURECA, JUWELS
- MELUXINA (Luxembourg EuroHPC Petascale system)
- EUPEX and HPCQS pilots
- … Exascale !
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MODULAR SUPERCOMPUTING
TO EXASCALE

43

2011

2023

2020

Petascale

2024Pre-Exascale
@ Lux, @It

Pilot systems

2021
2022

2017
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