
MODULAR SUPERCOMPUTING: a system-wide
orchestration of heterogeneous resources
ADAC, 24.01.2022 I Estela Suarez (JSC)

OUTLINE
• System architecture

- From dual architecture to the
Modular Supercomputing Architecture (MSA)

- Hardware implementations of MSA
• Software

- Software stack
- ParaStation Modulo
- Scheduler

• Application experience
• Conclusions and next steps

Suarez – 2022 3

JSC DUAL APPROACH
3

Can one combine the best of these
two worlds into a single system?

Suarez – 2022 4

THE DEEP PROJECTS

2011-2021: The DEEP projects
• DEEP (2011 – 2015)

- Introduced Cluster-Booster architecture

• DEEP-ER (2013 – 2017)
- Added I/O and resiliency functionalities

• DEEP-EST (2017 – 2021)
- Modular Supercomputer Architecture

2021-2024 The SEA projects
• DEEP-SEA, IO-SEA, RED-SEA

Suarez – 2022 5

HOMOGENEOUS
General Purpose Cluster

CPU

CPU

CPU

Network

CPU

CPU

CPU

Nodes contain only CPUs

Suarez – 2022 6

HETEROGENOUS MONOLITHIC
Every node contains accelerators (e.g. GPUs)

Network

CPU

CPU

CPU

• Every node contains CPU(s) and some accelerator
• All nodes are equal  “monolithic”

accel
accel

accel
accel

accel
accel

accel
accel

accel
accel

accel
accel

CPU

CPU

CPU

Suarez – 2022 7

HETEROGENOUS MODULAR
Different nodes are grouped in “modules”

Network

• All nodes within one module are equal
• Different modules have different configurations  “modular”

accel
accel

accel
accel

accel
accel

+: Energy efficient
+: Better scalability
+: High flexibility
+: Dynamic resource

assignment
-: Complexity

CPU

CPU

CPU

Cluster Booster

C
P
U

C
P
U

C
P
U

Suarez – 2022 8

MODULAR SUPERCOMPUTING
ARCHITECTURE
Composability of heterogeneous
resources

Module 2
Booster

BN

BN

BN

BN

BN BN

BN

BN

BN

Module 1
Cluster

CN

CN

CN

CN

Module 6
Multi-tier

Storage System

Storage
system

Storage
system

Module 3
Data Analytics

Module

AN AN AN

Module 5
Quantum
Module

QN QN
Module 4

Neuromorphic
Module

NN NN

MSA

• E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing
Architecture: from idea to production", Chapter 9 in Contemporary
High Performance Computing: from Petascale toward Exascale,
Volume 3, p 223-251, CRC Press. (2019)

• E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at
JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12,
(2018)

• Cost-effective scaling

Suarez – 2022 9

CPU
GPU GPUGPU GPU DDR

GPU-centric
node

HBM HBM HBM HBMMSA

H
B

M
D

D
R

H
B

M
D

D
R EPI node

DDR NVM

Highly
heterogeneous
node

HBM

accel-
1CPU

accel-
2

accel-
3

Suarez – 2022 10

MODULAR SUPERCOMPUTING
ARCHITECTURE

• Cost-effective scaling
• Effective resource-sharing
• Match application diversity

- Large-scale, complex workflows
- Data analytics
- Machine- and Deep Learning
- Artificial Intelligence

Composability of heterogeneous
resources

• E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing
Architecture: from idea to production", Chapter 9 in Contemporary
High Performance Computing: from Petascale toward Exascale,
Volume 3, p 223-251, CRC Press. (2019)

• E. Suarez, N. Eicker, and Th. Lippert, "Supercomputer Evolution at
JSC", Proceedings of the 2018 NIC Symposium, Vol.49, p.1-12,
(2018)

High-scale
Simulation
workflow

Data
Analytics
workflow

Deep
Learning
workflow

Suarez – 2022 11

THE HARDWARE PROTOTYPES
CDF – 18.06.2019

DEEP-ER Prototype
16 Xeon + 8 KNL nodes
100Gbit Extoll
40 TFlop/s

DEEP Prototype
128 Xeon + 284 KNC nodes
InfiniBand + 1.5Gbit Extoll
550 TFlop/s

DEEP-EST Prototype
55 Cluster + 75 Booster + 16 Data Analytics
100 Gbit Extoll + InfiniBand + Eth
800 TFlop/s

2015 2016 2020 © FZJ

Suarez – 2022 12

MODULAR SUPERCOMPUTER JUWELS
JUWELS Cluster

Intel Xeon (Skylake) processor
InfiniBand EDR network
2,500 compute nodes

10 PFLOP/s peak (CPU-based)

JUWELS Booster
AMD EPYC Rome 7402 processor

3,700 NVIDIA A100 GPUs
InfiniBand HDR DragonFly+

70 PFLOP/s peak (GPU-based)

#7#44
Entry in Nov’20

TOP500: Rank 7 World
Rank 1 Europe

Green500: Rank 1 in TOP250

TOP5 AI: Rank 4 (3 in 2021)

JUWELS is designed for simulation and
large-scale machine learning

Funded through SiVeGCS (BMBF, MWK-NRW)

Entry in Nov’20

Suarez – 2022 13

JSC MSA DEPLOYMENTS

DEEP-EST Review at Month 36, Virtual, 01.10.2020

JUQUEEN

JUROPA

JURECA

Architecture innovation
started in DEEP

Booster

Cluster

JURECA

JUWELS

JUNIQ

Suarez – 2022 14Source: Valentin Plugaru

MELUXINA
Cluster: 570 CPU nodes
• AMD EPYC 7H12, 2× 64C @2.6GHz, 512 GB (~ 4 GB / core)

Booster: 200 GPU nodes
• AMD EPYC 7452, 2× 32C @ 2.35GHz, 512 GB (~ 8 GB / core)
• 4× NVIDIA A100 Ampere, 40GB HBM2

Smaller partitions
20 Large Memory nodes: CPU node with 4096 GB, 1.92 TB SSD
20 FPGA nodes: CPU node with, 2× Stratix FGPA10MX (16GB HBM)
20 Cloud nodes: CPU node with 4096 GB, 1.92 TB SSD

System-wide
• NVIDIA/Mellanox InfiniBand HDR 200 Gb/s
• Atos BullSequana XH2000
• ParTec ParaStation Modulo Software

OUTLINE
• System architecture

- From dual architecture to the
Modular Supercomputing Architecture (MSA)

- Hardware implementations of MSA
• Software

- Software stack
- ParaStation Modulo
- Scheduler

• Application experience
• Conclusions and next steps

Suarez – 2022 16

MATCHING APPLICATIONS AND HARDWARE

HW

Appls.SW

Suarez – 2022 17

SOFTWARE ENVIRONMENT
• Low-level SW: Inter-network bridging
• Scheduler: Slurm, psslurm (ParaStation Modulo)
• Filesystem: BeeGFS, GPFS
• Compilers: Intel, GCC, NVIDIA HPC SDK
• Debuggers: Intel Inspector, TotalView
• Programming: ParaStation MPI, OpenMP, OmpSs, CUDA
• Performance analysis tools: Scalasca, Score-P

Extrae/Paraver, Vampir, Intel Advisor, VTune…
• Benchmarking tools: JUBE
• I/O Libraries: SIONlib, SCR, HDF5,…

• Eicker et al., Bridging the DEEP Gap - Implementation of an Efficient Forwarding Protocol, Intel European Exascale Labs - Report 2013 34-41
• Clauss et al., Dynamic Process Management with Allocation-internal Co-Scheduling towards Interactive Supercomputing, COSH@HiPEAC,(2016)

Suarez – 2022 18

ParaStation Modulo
• ParaStation ClusterTools

- Tools for system provisioning and system management

• ParaStation HealthChecker & TicketSuite
- Automated error detection & error handling
- Ensuring integrity of the computing environment
- Keeping track of issues
- Powerful analysis tools

• ParaStation Process Management & ParaStation MPI
- Runtime environment tuned for the largest distributed memory supercomputers
- Optimally support the Modular Supercomputing Architecture

Source: Thomas Moschny

Suarez – 2022 19

ParaStation Process Manager
• Scalable network of

process management daemons
- Process startup and control, I/O forwarding, …
- Precise resource monitoring
- Proper cleanup after jobs
- Daemons run on the compute nodes

• psslurm: full integration with Slurm
- Plugin to ParaStation Management
- Reduce number of daemons on compute nodes
o Replace node-local Slurm daemon

- Integration with ParaStation HealthChecker
- Possible to fix problems and add unique features

HEAD NODE

Slurm
Server

slurmctld

Job
List

LOGIN NODE

sbatch / salloc
srun

Job
script

COMPUTE NODE

psid / psslurm

PAM

SSH Daemon

COMPUTE NODE

ParaStation psid
psacc

pspmi(x)

core /
frame-
work

psslurm

Source: Thomas Moschny

Suarez – 2022 20

ParaStation MPI Library
• Based on MPICH 3.4.2 (MPI-3.1 compliant)

- Supports MPICH tools (tracing, debugging, …)
- MPICH layers beneath ADI3 replaced

by ParaStation PSP Device
- Powered by pscom low-level communication library
- Maintains MPICH ABI compatibility

• Support for various transports and protocols via pscom plugins
- Support for InfiniBand, Omni-Path, Extoll, (soon BXI)
- Multiple transports / plugins can be used concurrently
- Gateway capability via PSGW plugin
- CUDA awareness via GPUDirect

• Proven scaling up to ~3,500 nodes and ~140,000 procs. / job

MPI Application
MPI Interface

MPIR
(HW-independent)
ADI3 Interface

MPID
(HW-dependent)

HW Interfaces

Hardware

M
PI

C
H

ar
ch

ite
ct

ur
e

PSP Device

pscom Interface

pscom

pscom Plugin Interface

SHM UCX PSGW…

Source: Thomas Moschny

Suarez – 2022 21

ParaStation Global MPI for MSA

• Clauss et al., Dynamic Process Management with Allocation-internal Co-Scheduling
towards Interactive Supercomputing, COSH@HiPEAC, (2016)

• ParaStation Global MPI
– Uses MPI_Comm_spawn()

 Collective spawn groups of processes
from Cluster to Booster (or vice-versa)

– Inter-communicator
 Connects the 2 MPI_COMM_WORLD
 Contains all parents on one side and all children on the other
 Returned by MPI_Comm_spawn for the parents
 Returned by MPI_Get_parent by the children

• An MPI application can run:
– Using only Cluster nodes
– Using only Booster nodes
– Distributed over Cluster and Booster

 In this case two executables are created
 Collective offload process
 Transparent data exchange via MPI

- One can also start two parts of a code and connect
them via MPI_Connect()
- Or have one single common MPI_COMM_WORLD and
split it into subcommunicators via MPI_Comm_Split()

Suarez – 2022 22

COMPILE AND RUN
• Compilation

- Creates two executables (if different CPU architecture)
o One for CLUSTER code
o One for BOOSTER code

• Batch system
- Reserves required resources

• Execution
- Script starts Booster code
- This code calls MPI_Comm_spawn() with Cluster executable
- Optional: xenv to load suitable environment modules

• Runtime + Scheduler + FS
- Detect ParaStation MPI calls
- Distribute child binaries

salloc --partition=cluster -N 4
: --partition=booster -N 12

srun --het-group=1 -N 4 -n 8
./app_booster

Suarez – 2022 23

Heterogeneity from user’s PoV

• Slurm supports the ability to submit heterogeneous jobs (since v 17.11)
- form job pack (het-job) allocation using colon notation for salloc, sbatch, srun
- even allowing different executables

• Full support for job packs in ParaStation psslurm, with unique features for modular jobs:
- Support for heterogeneous jobs with common MPI_COMM_WORLD
- For each job in the job pack, resources can be specified individually
- Support global resources (e.g. gateways): psgw plugin to psmgmt + spank plugin

o Compensates for Slurm’s inability to handle global resources
o Extends salloc, srun and sbatch

• Modular here means: Jobs across heterogeneous hardware
- Either with a common MPI_COMM_WORLD, or with separated / interconnected MPI_COMM_WORLDS

$ srun –N 1 –p part1 ./first \
: -N 2 –p part 2 ./second

Source: Thomas Moschny

Suarez – 2022 24

Explicit MSA-extensions to ParaStation MPI
• API additions to retrieve topology information

- Querying the module ID:

- Splitting communicators according to the topology:

MPI_Info_get (MPI_INFO_ENV , "msa_module_id", …, value, …);

MPI_Comm_split_type (oldcomm, MPIX_COMM_TYPE_MODULE, …, &newcomm);

• Modularity-aware MPI collectives
- Optimized patterns for collectives that take

topologyof the MSA system into account
- Assumption: Inter-module communication is

the bottleneck
- Dynamic updates of the communication

patterns supported, e.g. for malleable jobs
(experimental)

Module 1
C C
C C

Module 2
B B
B B

Module 3
D D

Bad (binary tree)

MPI_Bcast()

Module 1
C C
C C

Module 2
B B
B B

Module 3
D D

Good (hierarchical)

Source: Thomas Moschny

Suarez – 2022 25

IMB MPI Benchmarks
Allreduce with 8 (CN) + 8 (DAM) nodes,
8 processes per node, and 1 Gateway node

Hiearchical collectives (MSA awareness)

• General rules to optimize collectives execute these steps in order:
- 1) Do all module-internal gathering and/or reduction operations (if required)
- 2) Conduct the inter-module operation with a single process per module
- 3) Perform a strict module-local data distribution

• Multi-level hierarchy awareness
- Apply this set of rules recursively,

i.e., node level, module level, system level

• Performance heavily depends on concrete settings, i.e.:
- Number of processes / gateway nodes
- Distribution of the ranks in the communicator
- Message sizes (and hence the collective communication pattern)

Size [Byte]

Source: Thomas Moschny

Suarez – 2022 26

RESOURCE MANAGEMENT

App1
part 1

App1.2

App
1.3CPU

Accel. n

GPU App 2.1

Accel. 2

App
3.1

App 3.2

App 2.2
App 4.1

App
4.2

resource

time

App 5.1

App
5.2

App1
part 1

App1.2

App
1.3CPU

Accel. n

GPU
Accel. 2

App
3.1

App 3.2

App 4.1
App
4.2

resource

time

App 5.1

App
5.2

App 2.1

App 2.2

Current
behaviour

Ideal
behaviour

Resource
reservation window

Application
execution
parts

Application execution part

=
Resource reservation window

Suarez – 2022 27

Improved Workflow Support (experimental)

• New parameter --delay introduced in sbatch
command for job packs
- Amount of time, the next job should wait after start of the

first job in a job pack

• Goal: Overlapping job execution
- Currently not supported by Slurm
o Whole job pack either accepted or rejected
o All jobs allocated and run in parallel
o All jobs wait for allocation if any of the jobs can not be

allocated at the moment

Time

Job 1

Job 2

Job 3

Typical Workflow supported
by Slurm

Time

Job 1

Job 2

Job 3

Workflow we are trying to
achieve

Suarez – 2022 28

EXTENDING THE SOFTWARE STACK

• Support for
accelerators &
memory

• Malleability

• Interoperability

• Composability

• Performance
portability

• Resiliency

Application / Workflow

Programming Model

Component-specific
node-level support

Component-specific
node-level support

Component-specific
node-level support

Operating System

System Architecture
CPU

+DDR
+NVM

GPU
+HBM

Accel. 2
+ mem

Accel. N
+ mem

…

Runtime

GPIOpenMP OmpSs MPI

DaCeDSL NabLab

Suarez – 2022 29

Quantum integration in MSA

• New usage models
- Tightly coupled simulations: benefit from efficient data exchange
- Hybrid quantum-HPC simulations: combining quantum and classical algorithms
- Workflows comprising stages on the QPU, with pre- and post-processing

on HPC modules

• Integrate QPU and its front-end into the managements stack
- Low-latency connection to other modules via federated, high-speed network
- Unified environment: Integrated in the user-, SW-, schedule- and resource- mgmt.
o Provide “direct” access of the QPU via a web-based portal
o Redirect portal requests through the global scheduler/resource manager
o Pseudo-shared usage model as prerequisite

• Exact requirements depend on the use case and are subject to research

Source: Thomas Moschny

OUTLINE
• System architecture

- From dual architecture to the
Modular Supercomputing Architecture (MSA)

- Hardware implementations of MSA
• Software

- Software stack
- ParaStation Modulo
- Scheduler

• Application experience
• Conclusions and next steps

Suarez – 2022 31

Architecture Use-Modes

Cluster-Booster
use mode

Code partition
Workflow
I/O forward

• Kreuzer, et al., Application Performance on a Cluster-Booster System. IPDPSW – HCW (2018) [10.1109/IPDPSW.2018.00019]
• Kreuzer et al. The DEEP-ER project: I/O and resiliency extensions for the Cluster-Booster architecture. HPCC’18 proceedings (2018)
[10.1109/HPCC/SmartCity/DSS.2018.00046]

• Wolf et al., PIC algorithms on DEEP: The iPiC3D case study. PARS-Mitteilungen 32, 38-48 (2015)
• Christou et al., EMAC on DEEP, Geoscientific model devel.(2016) [10.5194/gmd-9-3483-2016]
• Kumbhar et al., Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations, Lecture Notes in Computer Science 9697 (2016)
[10.1007/978-3-319-41321-1_19]

• Leger et al., Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform. ParCo 2015, Advances in Parallel
Computing, 27 (2016) [10.3233/978-1-61499-621-7-349]

Suarez – 2022 32

Application use case: xPic
• Space Weather simulation

- Simulates plasma produced in solar eruptions and its
interaction with the Earth magnetosphere

- Particle-in-Cell (PIC) code
- Authors: KU Leuven

• Two solvers:
- Field solver: Computes electromagnetic (EM) field

evolution
o Limited code scalability
o Frequent, global communication

- Particle solver: Calculates motion of charged particles
in EM-fields

o Highly parallel
o Billions of particles
o Long-range communication

A. Kreuzer, J. Amaya, N. Eicker, E. Suarez, "Application performance on a Cluster-Booster system", 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), HCW (20th International
Heterogeneity in Computing Workshop), Vancouver (2018), p: 69 - 78. [doi: 10.1109/IPDPSW.2018.00019]

Suarez – 2022 33

xPic – ORIGINAL CONFIGURATION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

for (auto i=beg+1; i<=end; i++){
fld.solver->calculateE();
fld.cpyToArr_F();

pcl.cpyFromArr_F();
for (auto is=0; is<nspec; is++) {
pcl.species[is].ParticlesMove();
pcl.species[is].ParticleMoments();

}
pcl.cpyToArr_M();

fld.solver->calculateB();
fld.cpyFromArr_M();

}

fld: Field Solver

plc: Particle Solver

Copy information
between solvers

Suarez – 2022 34

xPic – CODE PARTITION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#ifdef __CLUSTER__
for (auto i=beg+1; i<=end; i++){

fld.solver->calculateE();
fld.cpyToArr_F();
ClusterToBooster();
// Auxiliary computations
ClusterWait();

BoosterToCluster();

BoosterWait();
fld.solver->calculateB();
fld.cpyFromArr_M();

}
#endif

#ifdef __BOOSTER__
for (auto i=beg+1; i<=end; i++){

ClusterToBooster();

ClusterWait();
pcl.cpyFromArr_F();
for (auto is=0; is<nspec; is++) {
pcl.species[is].ParticlesMove();
pcl.species[is].ParticleMoments();

}
pcl.cpyToArr_M();
BoosterToCluster();
// I/O and auxiliary computations
BoosterWait();

}
#endif

Suarez – 2022 35

xPic – (1-NODE) PERFORMANCE RESULTS

• Field solver: 6× faster on Cluster
• Particle solver: 1.35 × faster on Booster
• Overall performance gain:

– 3%-4% overhead per solver for C+B
communication (point to point)

A. Kreuzeret al. "Application Performance on a Cluster-Booster System“, 2018 IEEE IPDPS Workshops
(IPDPSW), Vancouver, Canada, p 69 - 78 (2018) [10.1109/IPDPSW.2018.00019]

#cells per node 4096

#particles per cell 2048

Compilation flags -openmp, -mavx (Cluster)
-xMIC-AVX512 (Booster)

28% × gain compared to Cluster alone
21% × gain compared to Booster alone

1×
node

38% × gain compared to Cluster only
34% × gain compared to Booster only

8×
nodes

Suarez – 2022 36

xPic – STRONG SCALING on JURECA

• Code portions can be scaled-up
independently
- Particles scale almost linearly on Booster
- Fields kept constant on the Cluster (4CNs)

• A configuration is reached where same
time is spent on Cluster and Booster
- Additional 2× time-saving is enabled via

overlapping

#cells per node 36864

#particles per cell 1024

#blocks per MPI process 12, 32 or 64

Compilation flags -mavx (Cluster)
-openmp, xMIC-AVX512 (Booster)

(4 Cluster nodes)

Suarez – 2022 37

GROMACS: multi-module usage in MD simulations
• Best mapping on MSA depends on the problem size and aims at optimizing the computational load

- <104 particles: only on Cluster (CPU)
- ~ 105 particles: Booster or DAM (Data Analytics Module)
- >106 particles (large macromolecules): pair interactions on GPU, run PME on CPUs

Suarez – 2022 38

GROMACS: multi-module usage in MD simulations
• Best mapping on MSA depends on the problem size and aims at optimizing the computational load

- <104 particles: only on Cluster (CPU)
- ~ 105 particles: Booster or DAM (Data Analytics Module)
- >106 particles (large macromolecules): pair interactions on GPU, run PME on CPUs
- Very large volume (>106 nm3): Replace PME with FMM (Fast Multipole Method) running on ESB

Suarez – 2022 39

0

10

20

30

40

50

2 4 8 16 32 46Pe
rf

or
m

an
ce

 g
ai

n
[%

]

nodes on each module

Relative GROMACS performance gain:
CM+ESB configuration to ESB-only

(strong scaling)

1.25M atoms 2.5M atoms 5M atoms 10M atoms

20M atoms 40M atoms 80M atoms

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32 46

Pa
ra

lle
l e

ffi
ci

en
cy

nodes

Comparison of the parallel efficiency on CM-only
and CM+ESB (strong scaling)

CM-only CM+ESB Ideal

GROMACS: multi-module usage in MD simulations
• Best mapping on MSA depends on the problem size and aims at optimizing the computational load

- <104 particles: only on Cluster (CPU)
- ~ 105 particles: Booster or DAM (Data Analytics Module)
- >106 particles (large macromolecules): pair interactions on GPU, run PME on CPUs
- Very large volume (>106 nm3): Replace PME with FMM running on ESB

Suarez – 2022 40

NextDBSCAN: multi-module usage in ML

• Parallel algorithm for density-based clustering of arbitrary data sets
- Performance and flexibility gain by running on multiple modules

See presentation in
ADAC applications group:

DBSCAN Clustering and Modular
Supercomputing: Lessons Learned

Ernir Erlingsson (University of Iceland)

OUTLINE
• System architecture

- From dual architecture to the
Modular Supercomputing Architecture (MSA)

- Hardware implementations of MSA
• Software

- Software stack
- ParaStation Modulo
- Scheduler

• Application experience
• Conclusions and next steps

Suarez – 2022 42

CONCLUSIONS
• The Modular Supercomputing Architecture (MSA)

- Orchestrates heterogeneity at system level
- Allows scaling hardware in economical way (Booster  Exascale)
- Serves very diverse application profiles
o Maximum flexibility for users, without taking anything away (still can use individual modules)

• Distribute applications on the MSA give each code-part a suitable hardware
- Straight-forward implementation for workflows
- Partition at MPI-level interesting for multi-physics / multi-scale codes
- Monolithic codes do not need to be divided

• Current / Upcoming implementations of MSA
- DEEP system, JURECA, JUWELS
- MELUXINA (Luxembourg EuroHPC Petascale system)
- EUPEX and HPCQS pilots
- … Exascale !

Suarez – 2022 43

MODULAR SUPERCOMPUTING
TO EXASCALE

43

2011

2023

2020

Petascale

2024Pre-Exascale
@ Lux, @It

Pilot systems

2021
2022

2017

THANK YOU!

The DEEP projects have received funding from the
European Union’s Seventh Framework Programme
(FP7) for research, technological development and
demonstration and the Horion2020 (H2020) funding
framework under grant agreement no. FP7-ICT-
287530 (DEEP), FP7-ICT-610476 (DEEP-ER) ,
H2020-FETHPC-754304 (DEEP-EST), and EuroHPC
955606 (DEEP-SEA).

www.deep-projects.eu
@DEEPprojects

	Modular Supercomputing: a system-wide orchestration of heterogeneous resources
	outline
	JSC dual approach
	The DEEP Projects
	Homogeneous
	Heterogenous Monolithic
	Heterogenous modular
	Modular supercomputing architecture
	Foliennummer 9
	Modular supercomputing architecture
	The hardware Prototypes
	Modular supercomputer JUWELS
	JSC MSA Deployments�
	Foliennummer 14
	outline
	Matching applications and hardware
	Software environment
	ParaStation Modulo
	ParaStation Process Manager
	ParaStation MPI Library
	ParaStation Global MPI for MSA
	Compile and Run
	Heterogeneity from user’s PoV
	Explicit MSA-extensions to ParaStation MPI
	Hiearchical collectives (MSA awareness)
	Resource management
	Improved Workflow Support (experimental)
	Extending the software stack
	Quantum integration in MSA
	outline
	Architecture Use-Modes
	Application use case: xPic
	xPic – original configuration
	xPic – code partition
	xPic – (1-node) Performance Results
	xPic – strong scaling on JURECA
	GROmACS: multi-module usage in MD simulations
	GROmACS: multi-module usage in MD simulations
	GROmACS: multi-module usage in MD simulations
	NextDBSCAN: multi-module usage in ML
	outline
	Conclusions
	Modular supercomputing�To exascale
	Thank you!

